JEE Advanced 2025 Exam: Dates, Syllabus, Registration, and Preparation Guide

Prepare for JEE Advanced 2025 Exam with important dates, syllabus, registration details, and effective preparation guidance

Sign Up for free Online Test

EaseToLearn is providing an exclusive interface for your Joint Entrance Examination – Advanced 2024 EXAMINATION. Get the latest updated JEE ADVANCED mock test series, JEE ADVANCED previous year question papers, JEE ADVANCED Question Bank, and JEE ADVANCED Study material. Sign up on Easetolearn JEE ADVANCED Course to get the Latest JEE ADVANCED Syllabus 2024.


Easetolearn will cover and provide you with an updated syllabus of the JEE ADVANCED 2024 EXAM which covers topics- Mathematics, Chemistry and Physics. My Study Room of Easetolearn will provide you with study material on these JEE ADVANCED Exam syllabus topics.


To Join the Online JEE ADVANCED Mock Test Series 2024 -Click Here


JEE ADVANCED EXAM Syllabus 2024  


The JEE ADVANCED 2024 exam consists of two papers: Paper I and Paper II and each paper consist of three sections – Physics, Chemistry and Mathematics.



Physical chemistry


General topics: Concept of atoms and molecules; Dalton’s atomic theory; Mole
concept; Chemical formulae; Balanced chemical equations; Calculations (based
on mole concept) involving common oxidation-reduction, neutralisation, and
displacement reactions; Concentration in terms of mole fraction, molarity,
molality and normality.

Gaseous and liquid states: Absolute scale of temperature, ideal gas equation;
Deviation from ideality, van der Waals equation; Kinetic theory of gases,
average, root mean square and most probable velocities and their relation
with temperature; Law of partial pressures; Vapour pressure; Diffusion of

Atomic structure and chemical bonding: Bohr model, spectrum of hydrogen
atom, quantum numbers; Wave-particle duality, de Broglie hypothesis;
Uncertainty principle; Qualitative quantum mechanical picture of hydrogen
atom, shapes of s, p and d orbitals; Electronic configurations of elements (up to
atomic number 36); Aufbau principle; Pauli’s exclusion principle and Hund’s
rule; Orbital overlap and covalent bond; Hybridisation involving s, p and d
orbitals only; Orbital energy diagrams for homonuclear diatomic species;
Hydrogen bond; Polarity in molecules, dipole moment (qualitative aspects
only); VSEPR model and shapes of molecules (linear, angular, triangular, square
planar, pyramidal, square pyramidal, trigonal bipyramidal, tetrahedral and

Energetics: First law of thermodynamics; Internal energy, work and heat,
pressure-volume work; Enthalpy, Hess’s law; Heat of reaction, fusion and
vapourization; Second law of thermodynamics; Entropy; Free energy; Criterion
of spontaneity.

Chemical equilibrium: Law of mass action; Equilibrium constant, Le Chatelier’s
principle (effect of concentration, temperature and pressure); Significance of
ΔG and ΔG0 in chemical equilibrium; Solubility product, common ion effect, pH
and buffer solutions; Acids and bases (Bronsted and Lewis concepts);
Hydrolysis of salts.

Electrochemistry: Electrochemical cells and cell reactions; Standard electrode
potentials; Nernst equation and its relation to ΔG; Electrochemical series, emf
of galvanic cells; Faraday’s laws of electrolysis; Electrolytic conductance,
specific, equivalent and molar conductivity, Kohlrausch’s law; Concentration

Chemical kinetics: Rates of chemical reactions; Order of reactions; Rate
constant; First order reactions; Temperature dependence of rate constant
(Arrhenius equation).

Solid state: Classification of solids, crystalline state, seven crystal systems (cell
parameters a, b, c, α, β, ), close packed structure of solids (cubic), packing in
fcc, bcc and hcp lattices; Nearest neighbours, ionic radii, simple ionic
compounds, point defects.

Solutions: Raoult’s law; Molecular weight determination from lowering of
vapour pressure, elevation of boiling point and depression of freezing point.
Surface chemistry: Elementary concepts of adsorption (excluding adsorption
isotherms); Colloids: types, methods of preparation and general properties;
Elementary ideas of emulsions, surfactants and micelles (only definitions and

Nuclear chemistry: Radioactivity: isotopes and isobars; Properties of α, β and
rays; Kinetics of radioactive decay (decay series excluded), carbon dating;
Stability of nuclei with respect to proton-neutron ratio; Brief discussion on
fission and fusion reactions.

Inorganic chemistry


Isolation/preparation and properties of the following non-metals: Boron,
silicon, nitrogen, phosphorus, oxygen, sulphur and halogens; Properties of
allotropes of carbon (only diamond and graphite), phosphorus and sulphur.

Preparation and properties of the following compounds: Oxides, peroxides,
hydroxides, carbonates, bicarbonates, chlorides and sulphates of sodium,
potassium, magnesium and calcium; Boron: diborane, boric acid and borax;
Aluminium: alumina, aluminium chloride and alums; Carbon: oxides and
oxyacid (carbonic acid); Silicon: silicones, silicates and silicon carbide;
Nitrogen: oxides, oxyacids and ammonia; Phosphorus: oxides, oxyacids
(phosphorus acid, phosphoric acid) and phosphine; Oxygen: ozone and
hydrogen peroxide; Sulphur: hydrogen sulphide, oxides, sulphurous acid,
sulphuric acid and sodium thiosulphate; Halogens: hydrohalic acids, oxides and
oxyacids of chlorine, bleaching powder; Xenon fluorides.

Transition elements (3d series): Definition, general characteristics, oxidation
states and their stabilities, colour (excluding the details of electronic
transitions) and calculation of spin-only magnetic moment; Coordination
compounds: nomenclature of mononuclear coordination compounds, cis-trans
and ionisation isomerisms, hybridization and geometries of mononuclear
coordination compounds (linear, tetrahedral, square planar and octahedral).

Preparation and properties of the following compounds: Oxides and chlorides
of tin and lead; Oxides, chlorides and sulphates of Fe2+, Cu2+ and Zn2+;
Potassium permanganate, potassium dichromate, silver oxide, silver nitrate,
silver thiosulphate.

Ores and minerals: Comm
only occurring ores and minerals of iron, copper, tin,
lead, magnesium, aluminium, zinc and silver.

Extractive metallurgy: Chemical principles and reactions only (industrial details
excluded); Carbon reduction method (iron and tin); Self reduction method
(copper and lead); Electrolytic reduction method (magnesium and aluminium);
Cyanide process (silver and gold).

Principles of qualitative analysis: Groups I to V (only Ag+, Hg2+, Cu2+, Pb2+, Bi3+, Fe3+, Cr3+, Al3+, Ca2+, Ba2+, Zn2+, Mn2+ and Mg2+); Nitrate, halides (excluding fluoride), sulphate and sulphide.


Organic chemistry


Concepts: Hybridisation of carbon; [1] and bonds; Shapes of simple organic
molecules; Structural and geometrical isomerism; Optical isomerism of
compounds containing up to two asymmetric centres, (R,S and E,Z nomenclature excluded);
IUPAC nomenclature of simple organic compounds (only hydrocarbons, mono-functional and bi-functional compounds);
Conformations of ethane and butane (Newman projections); Resonance and
hyperconjugation; Keto-enoltautomerism; Determination of empirical and
molecular formulae of simple compounds (only combustion method);
Hydrogen bonds: definition and their effects on physical properties of alcohols
and carboxylic acids; Inductive and resonance effects on acidity and basicity of
organic acids and bases; Polarity and inductive effects in alkyl halides; Reactive
intermediates produced during homolytic and heterolytic bond cleavage;
Formation, structure and stability of carbocations, carbanions and free

Preparation, properties and reactions of alkanes: Homologous series, physical
properties of alkanes (melting points, boiling points and density); Combustion
and halogenation of alkanes; Preparation of alkanes by Wurtz reaction and
decarboxylation reactions.

Preparation, properties and reactions of alkenes and alkynes: Physical
properties of alkenes and alkynes (boiling points, density and dipole
moments); Acidity of alkynes; Acid catalysed hydration of alkenes and alkynes
(excluding the stereochemistry of addition and elimination); Reactions of
alkenes with KMnO4 and ozone; Reduction of alkenes and alkynes; Preparation
of alkenes and alkynes by elimination reactions; Electrophilic addition
reactions of alkenes with X2, HX, HOX and H2O (X=halogen); Addition reactions
of alkynes; Metal acetylides.

Reactions of benzene: Structure and aromaticity; Electrophilic substitution
reactions: halogenation, nitration, sulphonation, Friedel-Crafts alkylation and
acylation; Effect of o-, m- and p-directing groups in monosubstituted benzenes.

Phenols: Acidity, electrophilic substitution reactions (halogenation, nitration
and sulphonation); Reimer-Tieman reaction, Kolbe reaction.

Characteristic reactions of the following (including those mentioned above):
Alkyl halides: rearrangement reactions of alkyl carbocation, Grignard reactions,
nucleophilic substitution reactions; Alcohols: esterification, dehydration and
oxidation, reaction with sodium, phosphorus halides, ZnCl2/concentrated HCl,
conversion of alcohols into aldehydes and ketones; Ethers: Preparation by
Williamson’s Synthesis; Aldehydes and Ketones: oxidation, reduction, oxime
and hydrazone formation; aldol condensation, Perkin reaction; Cannizzaro
reaction; haloform reaction and nucleophilic addition reactions (Grignard
addition); Carboxylic acids: formation of esters, acid chlorides and amides,
ester hydrolysis; Amines: basicity of substituted anilines and aliphatic amines,
preparation from nitro compounds, reaction with nitrous acid, azo coupling
reaction of diazonium salts of aromatic amines, Sandmeyer and related
reactions of diazonium salts; carbylamine reaction; Haloarenes: nucleophilic
aromatic substitution in haloarenes and substituted haloarenes (excluding
Benzyne mechanism and Cine substitution).

Carbohydrates: Classification; mono- and di-saccharides (glucose and sucrose);
Oxidation, reduction, glycoside formation and hydrolysis of sucrose.

Amino acids and peptides: General structure (only primary structure for
peptides) and physical properties.

Properties and uses of some important polymers: Natural rubber, cellulose,
nylon, teflon and PVC.

Practical organic chemistry: Detection of elements (N, S, halogens); Detection
and identification of the following functional groups: hydroxyl (alcoholic and
phenolic), carbonyl (aldehyde and ketone), carboxyl, amino and nitro;
Chemical methods of separation of mono-functional organic compounds from
binary mixtures.




Algebra of complex numbers, addition, multiplication, conjugation, polar
representation, properties of modulus and principal argument, triangle
inequality, cube roots of unity, geometric interpretations.
Quadratic equations with real coefficients, relations between roots and
coefficients, formation of quadratic equations with given roots, symmetric
functions of roots.
Arithmetic, geometric and harmonic progressions, arithmetic, geometric and
harmonic means, sums of finite arithmetic and geometric progressions, infinite
geometric series, sums of squares and cubes of the first n natural numbers.
Logarithms and their properties.
Permutations and combinations, binomial theorem for a positive integral
index, properties of binomial coefficients.
Matrices as a rectangular array of real numbers, equality of matrices, addition,
multiplication by a scalar and product of matrices, transpose of a matrix,
determinant of a square matrix of order up to three, inverse of a square matrix
of order up to three, properties of these matrix operations, diagonal,
symmetric and skew-symmetric matrices and their properties, solutions of
simultaneous linear equations in two or three variables.
Addition and multiplication rules of probability, conditional probability, Bayes
Theorem, independence of events, computation of probability of events using
permutations and combinations.


Trigonometric functions, their periodicity and graphs, addition and subtraction
formulae, formulae involving multiple and sub-multiple angles, general
solution of trigonometric equations.
Relations between sides and angles of a triangle, sine rule, cosine rule, halfangle
formula and the area of a triangle, inverse trigonometric functions
(principal value only).

Analytical geometry

Two dimensions: Cartesian coordinates, distance between two points, section
formulae, shift of origin.
Equation of a straight line in various forms, angle between two lines, distance
of a point from a line; Lines through the point of intersection of two given
lines, equation of the bisector of the angle between two lines, concurrency of
lines; Centroid, orthocentre, incentre and circumcentre of a triangle.
Equation of a circle in various forms, equations of tangent, normal and chord.
Parametric equations of a circle, intersection of a circle with a straight line or a
circle, equation of a circle through the points of intersection of two circles and
those of a circle and a straight line.
Equations of a parabola, ellipse and hyperbola in standard form, their foci,
directrices and eccentricity, parametric equations, equations of tangent and
normal. Locus problems.

Three dimensions: Direction cosines and direction ratios, equation of a straight
line in space, equation of a plane, distance of a point from a plane.

Differential calculus

Real valued functions of a real variable, into, onto and one-to-one functions,
sum, difference, product and quotient of two functions, composite functions,
absolute value, polynomial, rational, trigonometric, exponential and
logarithmic functions.

Limit and continuity of a function, limit and continuity of the sum, difference,
product and quotient of two functions, L’Hospital rule of evaluation of limits of
Even and odd functions, inverse of a function, continuity of composite
functions, intermediate value property of continuous functions.
Derivative of a function, derivative of the sum, difference, product and
quotient of two functions, chain rule, derivatives of polynomial, rational,
trigonometric, inverse trigonometric, exponential and logarithmic functions.
Derivatives of implicit functions, derivatives up to order two, geometrical
interpretation of the derivative, tangents and normals, increasing and
decreasing functions, maximum and minimum values of a function, Rolle’s
theorem and Lagrange’s mean value theorem.

Integral calculus

Integration as the inverse process of differentiation, indefinite integrals of
standard functions, definite integrals and their properties, fundamental
theorem of integral calculus.
Integration by parts, integration by the methods of substitution and partial
fractions, application of definite integrals to the determination of areas
involving simple curves.
Formation of ordinary differential equations, solution of homogeneous
differential equations, separation of variables method, linear first order
differential equations.


Addition of vectors, scalar multiplication, dot and cross products, scalar triple
products and their geometrical interpretations.





Units and dimensions, dimensional analysis; least count, significant figures;
Methods of measurement and error analysis for physical quantities pertaining
to the following experiments: Experiments based on using Vernier calipers and
screw gauge (micrometer), Determination of g using simple pendulum, Young’s
modulus by Searle’s method, Specific heat of a liquid using calorimeter, focal
length of a concave mirror and a convex lens using u-v method, Speed of sound
using resonance column, Verification of Ohm’s law using voltmeter and
ammeter, and specific resistance of the material of a wire using meter bridge
and post office box.


Kinematics in one and two dimensions (Cartesian coordinates only),
projectiles; Uniform circular motion; Relative velocity.
Newton’s laws of motion; Inertial and uniformly accelerated frames of
reference; Static and dynamic friction; Kinetic and potential energy; Work and
power; Conservation of linear momentum and mechanical energy.
Systems of particles; Centre of mass and its motion; Impulse; Elastic and
inelastic collisions.

Law of gravitation; Gravitational potential and field; Acceleration due to
gravity; Motion of planets and satellites in circular orbits; Escape velocity.
Rigid body, moment of inertia, parallel and perpendicular axes theorems,
moment of inertia of uniform bodies with simple geometrical shapes; Angular
momentum; Torque; Conservation of angular momentum; Dynamics of rigid
bodies with fixed axis of rotation; Rolling without slipping of rings, cylinders
and spheres; Equilibrium of rigid bodies; Collision of point masses with rigid
Linear and angular simple harmonic motions.
Hooke’s law, Young’s modulus.

Pressure in a fluid; Pascal’s law; Buoyancy; Surface energy and surface tension,
capillary rise; Viscosity (Poiseuille’s equation excluded), Stoke’s law; Terminal
velocity, Streamline flow, equation of continuity, Bernoulli’s theorem and its
Wave motion (plane waves only), longitudinal and transverse waves,
superposition of waves; Progressive and stationary waves; Vibration of strings
and air columns; Resonance; Beats; Speed of sound in gases; Doppler effect (in

Thermal physics
Thermal expansion of solids, liquids and gases; Calorimetry, latent heat; Heat
conduction in one dimension; Elementary concepts of convection and
radiation; Newton’s law of cooling; Ideal gas laws; Specific heats (Cv and Cp for
monoatomic and diatomic gases); Isothermal and adiabatic processes, bulk
modulus of gases; Equivalence of heat and work; First law of thermodynamics
and its applications (only for ideal gases); Blackbody radiation: absorptive and
emissive powers; Kirchhoff’s law; Wien’s displacement law, Stefan’s law.

Electricity and magnetism
Coulomb’s law; Electric field and potential; Electrical potential energy of a
system of point charges and of electrical dipoles in a uniform electrostatic
field; Electric field lines; Flux of electric field; Gauss’s law and its application in
simple cases, such as, to find field due to infinitely long straight wire, uniformly
charged infinite plane sheet and uniformly charged thin spherical shell.
Capacitance; Parallel plate capacitor with and without dielectrics; Capacitors in
series and parallel; Energy stored in a capacitor.
Electric current; Ohm’s law; Series and parallel arrangements of resistances
and cells; Kirchhoff’s laws and simple applications; Heating effect of current.
Biot–Savart’s law and Ampere’s law; Magnetic field near a current-carrying
straight wire, along the axis of a circular coil and inside a long straight solenoid;
Force on a moving charge and on a current-carrying wire in a uniform magnetic
Magnetic moment of a current loop; Effect of a uniform magnetic field on a
current loop; Moving coil galvanometer, voltmeter, ammeter and their

Electromagnetic induction: Faraday’s law, Lenz’s law; Self and mutual
inductance; RC, LR and LC circuits with d.c. and a.c. sources.

Rectilinear propagation of light; Reflection and refraction at plane and
spherical surfaces; Total internal reflection; Deviation and dispersion of light by
a prism; Thin lenses; Combinations of mirrors and thin lenses; Magnification.
Wave nature of light: Huygen’s principle, interference limited to Young’s
double-slit experiment.

Modern physics
Atomic nucleus; α, β and  radiations; Law of radioactive decay; Decay
constant; Half-life and mean life; Binding energy and its calculation; Fission and
fusion processes; Energy calculation in these processes.
Photoelectric effect; Bohr’s theory of hydrogen-like atoms; Characteristic and
continuous X-rays, Moseley’s law; de Broglie wavelength of matter waves.


FAQs related to JEE Advanced Syllabus 2024


  1. Q: What is the syllabus for JEE Advanced?
    • A: The JEE Advanced syllabus covers topics in Physics, Chemistry, and Mathematics. It is designed to assess candidates' understanding and knowledge of various concepts taught in classes 11 and 12.


  1. Q: Where can I find the detailed JEE Advanced syllabus for 2024?
    • A: The detailed syllabus is usually available in the official information brochure released by the organizing institute. Candidates can access this information on the official website of JEE Advanced.


  1. Q: How is the JEE Advanced syllabus different from JEE Main?
    • A: While there is some overlap between the two, JEE Advanced is generally considered more challenging and may include additional or more advanced topics. The syllabus for JEE Advanced is designed to test a deeper understanding of the subjects.


  1. Q: Is the JEE Advanced syllabus the same for all three subjects (Physics, Chemistry, Mathematics)?
    • A: No, the syllabus is specific to each subject. The Physics, Chemistry, and Mathematics sections have their own set of topics and chapters that candidates need to prepare for.


  1. Q: Are there any changes in the JEE Advanced syllabus every year?
    • A: The core topics remain consistent, but there may be occasional updates or modifications to the syllabus. Any changes are usually communicated through the official notification.


  1. Q: Are the Class 11 and Class 12 syllabi both covered in JEE Advanced?
    • A: Yes, the syllabus for JEE Advanced includes topics from both Class 11 and Class 12. It is comprehensive and aims to assess a candidate's knowledge across both classes.


  1. Q: Can I get an idea of specific topics covered in the JEE Advanced syllabus for each subject?
    • A: The syllabus includes topics such as mechanics, electromagnetism, thermodynamics in Physics; organic chemistry, physical chemistry, and inorganic chemistry in Chemistry; and algebra, calculus, and coordinate geometry in Mathematics, among others.


  1. Q: Are there any topics that are excluded from the JEE Advanced syllabus?
    • A: The syllabus is comprehensive, covering a wide range of topics. However, it's important to refer to the official documentation to ensure accurate information about inclusions and exclusions.


  1. Q: Can I find recommended books for JEE Advanced preparation based on the syllabus?
    • A: Yes, there are many books by reputable authors that align with the JEE Advanced syllabus. It's advisable to choose books that cover the entire syllabus comprehensively.


  1. Q: Are there any online resources or apps for JEE Advanced preparation based on the syllabus?
    • A: Several online platforms and educational apps provide study materials, video lectures, and practice questions aligned with the JEE Advanced syllabus. These resources can be valuable for preparation.
#Note: The information provided above is just an indicative information of what is provided, and available. We make no such claim about the accuracy and reliability of this information. For more accurate/current information, please visit or contact the concerned institute/college/authorities.